Cover von Introduction to nondestructive testing wird in neuem Tab geöffnet

Introduction to nondestructive testing

a training guide
0 Bewertungen
Verfasser: Suche nach diesem Verfasser Mix, Paul E.
Jahr: 2005
Verlag: New York [u.a.], Wiley
Mediengruppe: Ausleihbestand
verfügbar

Exemplare

ZweigstelleStandorteStatusVorbestellungenFristBarcodeLageplanAusleihhinweis
Zweigstelle: Hauptstelle Standorte: TE-20 80 Status: Verfügbar Vorbestellungen: 0 Frist: Barcode: 00175099 Lagepläne: Lageplan Ausleihhinweis:

Inhalt

TABLE OF CONTENTS
1. Introduction
1.1. Digital Technology
1.2. Smaller is Better
1.3. Medical Marvels
1.4. Improving Shuttle Safety
1.5. Airport Security
1.6. Process Control
1.7. Instrument Synchronization with PXI
1.8. PCI vs. PXI
1.9. 60,000-Mile-High Elevator
1.10. Proliferation of Information
2. Acoustic Emissions
2.1. Principles and Theory
2.2. Signal Propagation
2.3. Physical Considerations
2.4. The AE Process Chain
2.5. Time Considerations
2.6. AE Parameters
2.7. The AE Measurement Chain
2.7.1 Couplant Agents
2.7.2 AE Sensors
2.7.3 Sensor Attachment
2.7.4 Sensor to Preamplifier Cable
2.7.5 AE Preamplifier
2.7.6 Preamplifier to Cable System
2.8. Vallen AMSY-5 High-Speed AE System
2.8.1. Frequency Filter
2.8.2. The A/D Converter
2.8.3. Feature Extraction
2.8.4. Transient Recorder
2.8.5. Data Buffer
2.8.6. Personal Computer and Software
2.8.7. Sensor Coupling Test (auto-calibration)
2.9. Location Calculation and Clustering
2.9.1. Location Calculation Based on Time Differences
2.9.2. Clustering
2.9.3. Sample Analysis Screen
2.9.4. Visualization of Measurement Results
2.10. Advantages and Limitations of AE Testing
2.10.1. Advantages
2.10.2. Advantages of Using Operating Medium (gas or liquid)
2.10.3. Advantages Compared to Other NDT Methods
2.10.4. Limitations
2.10.5. Location Errors
2.11. AMSY-5 Main Features
2.12. AE Transducers
2.13. Kistler Piezotron(r) Acoustic Emission Sensors and Couplers
2.14. AE Sensor Construction
2.15. Summary of AE Sensor Features
2.16. Technical Specifications - 8152B2 Sensor
2.17. AE Coupler Features
2.18. Technical Specifications 5125B Coupler
2.18.1. Input
2.18.2. Output
2.19. Acoustic Emission Technology
2.20. AE Applications
2.21. AE Theory
2.22. Applications
2.22.1 Behavior of Materials - Metals, Ceramics...
2.22.2 Nondestructive Testing During Manufacturing Processes
2.22.3 Monitoring Structures
2.22.4 Special Applications
2.23. Advanced Equipment
2.23.1 PCI-2 AE Unit
2.23.2 Key Features
2.23.3 PCI-8, 16-Bit, 8 Channel AE Unit
2.23.4 microSamos(tm), Budget Compact AE System
2.23.5 DiSP Systems
2.23.6 PCI/DSP-4 Card
2.23.7 Features of PCI/DSP-4 System Board
2.23.8 PCI/DSP-4 Board Operation and Functions
2.23.9 DiSP System Block Diagram
2.23.10 Other Company Products
2.24. Codes, Standards, Practices, Guidelines and Societies
2.24.1. Sheer Numbers
2.24.2. Terminology
2.24.3. Common Term Definitions
2.24.4. General Principles
2.24.5. Measurement Techniques and Calibration
2.24.6. Areas of Opportunity
2.25. Applications and Product Specific Procedures
2.26. Impact-Echo Method
2.26.1. Background
2.26.2. Finite Element Code
2.26.3. Ball Bearing Generated Stress
2.26.4. Impact-Echo Transducer Development
2.26.5. Frequency Domain Analysis
2.26.6. Theory of Operations
2.26.7. Propagation of Waves
2.26.8. Impact-Echo Instrumentation
2.26.8.1. Systems Components
2.26.8.2. Heavy Duty Carrying Case
2.26.8.3. Computer Recommendations
2.27. Technical Specifications
2.27.1. Hand-held Transducer Unit
2.27.2. A/D Data Acquisition System
2.27.3. Windows-based Software
2.28. Applications
3. Electromagnetic Testing Method
3.1. Eddy Current Theory
3.1.1. Surface Mounted Coils
3.1.2. Encircling Coils
3.2. Magnetic Flux Leakage Theory
3.3. Eddy Current Sensing Probes
3.4. Flux Leakage Sensing Probes
3.4.1. Induction Coils
3.4.2. Hall Effect Sensors
3.5. Factors Affecting Flux Leakage
3.6. Signal to Noise Ratio
3.7. Test Frequency
3.8. Magnetization for Flux Leakage Testing
3.9. Coupling
3.10. Eddy Current Techniques
3.11. Instrument Design Considerations
3.12. UniWest US-454 Eddy View
3.12.1. E-Lab Model US-450
3.12.2. ETC-2000 Scanner
3.13. Institute Dr. Foerster
3.14. Magnetic Flux Leakage Testing
3.15. Applications
3.15.1. General Eddy Current Applications
3.15.2. Specific Eddy Current Applications
3.15.3. General Flux Leakage Applications
3.15.4. Specific Leakage Flux Applications
3.16. Use of Computers
3.17. Barkhausen Noise/Micromagnetic Testing
3.17.1. Introduction
3.18. Early Applications
3.19. Principles of Measurement
3.20. Equipment
3.21. Technical Specifications
3.22. Calibration and Testing
3.23. Current Applications
3.23.1. Applications in Aircraft/Automotive/Marine Industries
3.24. General Applications
3.24.1. Pipe/Tubing/Sheet/Plate Manufacturing
3.25. Electro-Mechanical Acoustic Transducers (EMATS)
3.25.1. EMATs Advantage over Piezo-Electric Transducers
3.26. Basic Theory of Operation
3.27. Recent Applications and Developments
3.28. Alternate Field Current Measurement (AFCM) Method
3.29. AFCM Principles of Operation
3.29.1. Bx and Bz Components
3.29.2. Butterfly Plot
3.30. Probe Design
3.31. Applications
4, Laser Testing Methods
4.1. Introduction
4.2. Disadvantages
4.3. Main Advantages
4.4. Laser Theory
4.5. Laser Safety
4.6. Laser Classification
4.7. Training
4.8. Profilometry Methods
4.8.1. Stylus Profilometry
4.8.2. Optical Profilometry
4.8.3 White Light Profilometry
4.9. Basic TV Holography/ESPI Interferometry
4.9.1. Single Laser Operation
4.9.2. Camera Operation
4.9.3. Applications
4.9.4. Thermal Stresses
4.9.5. Quantitative Aspects of Mechanical Stress
4.9.6. Qualitative Aspects
4.10. Nanometric Profiling Measurements
4.10.1. Introduction
4.10.2. Autofocus Principle
4.10.3. Specifications
4.10.3.1. Sensor
4.10.3.2. Camera
4.11. Conoscopic Holography
4.11.1. Theory
4.11.2. Specifications
4.12. Confocal Measurement
4.12.1. Specifications
4.12.1.1. Sensor
4.12.1.2. Camera
4.13. Nanosurf Confocal Spectroscopy
4.13.1. Introduction
4.13.2. Standard Components
4.13.3. Options
4.14. 3D Confocal Microscopy
4.14.1. Principle of Operation
4.14.2. Advantages
4.14.3. Specifications
4.15. Nanometric Profiling Applications
4.16. Scanning Laser Profilometry
4.16.1. Optical Principle
4.16.2. Probes
4.16.3. 3D Profiler
4.16.4. LP-2000 Control Unit
4.17. Laser-Scanned Penetrant Inspection
4.17.1. Applications
4.18. Advanced Techniques
4.19. Natural and External Excitation
4.20. Strain/Stress Measurement
4.20.1. Theory of Operation
4.20.2. Technical Data
4.21. Longer Range 3D Speckle Interferometry System
4.21.1.. Technical Data
4.21.2. Hardware and Software Options
4.21.3. Applications for 3D-ESPI Systems
4.21.4. Technical Data
4.22. Nondestructive Testing (NDT)
4.23. Shearography
4.23.1 Principle of Shearography
4.23.2. Compact Shearography System
4.23.3. Technical Data
4.24. Portable Shearography System
4.24.1. Technical Data
4.24.2. Other Applications
4.25. Feltmetal Inspections System
4.25.1. Setup and Technique
4.25.2. Technical Data
4.26. Optional Applications
4.27. Optical Inspection Systems
4.27.1. ARAMIS
4.27.2. Industry Specific Applications
4.27.3. Measuring Procedure
4.27.4. Measurement Results
4.27.5. Measurement Advantages
4.27.6 Comparison of ESPU and 3D Image Correlation
4.27.7. ARAMIS HR Specifications
4.28. ARGUS
4.29. TRITOP
4.29.1. Photogrammetric Off-line System
4.29.2. Measurable Object Size
4.29.3. Digital Photogrammetry Functionality
4.30. System Advantages
4.31. Portable Measuring System Technique
4.32. Dynamic TRITOP
4.33. Other Laser Methods
5. Leak Testing Methods
5.1. Introduction
5.2. Fundamentals
5.3. Ultrasonic Leak Testing
5.3.1. Ultrasonic Leak Detectors
5.4. Bubble Leak Testing
5.5. Dye Penetrant Leak Testing
5.6. Pressure Change Leak Testing
5.7. Helium Mass Spectrometer Leak Testing
5.8. Mass Spectrometer Leak Detector
5.9. MSLD Subsystems
5.9.1 Spectrometer Tube
5.9.2 Vacuum Systems
5.10. Vacuum System Configurations
5.10.1. Conventional (Direct) Flow
5.10.2. Contra (Reverse) Flow
5.10.3. Midstage Flow
5.10.4. Multiple Flow
5.11. Electronics
5.11.1 I/O Functions
5.12. Methods of Leak Detection
5.13. Vacuum Testing Method (Outside - In)
5.13.1 Locating Leaks
5.13.2 Measuring Leaks
5.14 Pressure Test Method (Inside - Out)
5.14.1. Locating Leaks
5.14.2. Measuring Leaks
5.15. Accumulation Testing Method
5.16. Vacuum Systems
5.17. Pressurized Systems
5.18. MSLD Configurations
5.18.1. "Wet" or "Dry" Pumps
5.18.2. Cabinet or Workstation Models
5.18.3. Portable Units
5.18.4. Component or Integratable Units
5.19. Calibration
5.19.1. Calibrated Leaks
5.20. Radioisotope Trace Leak Testing
5.21. Bubble Leak Testing
5.21.1. Leak Detector Solution
5.21.2. Vacuum Box Bubble Leak Testing
5.21.3. Pressure Bubble Leak Testing
5.21.4. Indications
5.22. Pressure Change Leak Testing
5.22.1. Principles
5.22.2. Terminology
5.22.3. Equipment
5.22.4. Pressurizing Gases
5.23. Pressure Change Measurement Testing
5.23.1. Reference System Technique
5.24. Leakage Rate and Flow Measurement
5.25. Nuclear Reactor Systems
5.26. Halogen Diode Leak Testing
5.26.1. Principles
5.26.2. Terminology
5.26.3. Gases and Equipment
5.26.4. Calibration
5.27. "Sniffer" Techniques
5.27.1. Equipment Operation and Servicing
5.27.2. Normal Operation
5.28. VIC MSLD Leak Detectors
5.29. MSLD Subsystems
5.29.1. Spectrometer Tube
5.29.2. Vacuum System
5.30. Operating Sequence (MS-40)
5.31. Calibrating Sequence (MS-40)
6. Liquid Penetrant Tests
6.1. Introduction
6.2. Processing
6.3. Test Methods
6.3.1. Water Washable Fluorescent Penetrant Process
6.3.2. Post Emulsification Fluorescent Process
6.3.3. Reverse Fluorescent Dye Penetrant Process
6.3.4. Variable Dye Penetrant Process
6.3.5. Water Emulsifiable Visible Dye Penetrant Process
6.3.6. Water Washable Visible Dye Penetrant Process
6.3.7. Post Emulsifiable Visible Dye Penetrant Process
6.3.8. Solvent Clean Visible Dye Penetrant Process
6.4. Advantages and Disadvantages of Various Methods
6.5. Test Equipment
6.6. Penetrant Materials
6.7. System Components
6.8. Applications
6.9. Measurement of UV and Visible Light
7.0 Magnetic Particle Testing
7.1. Magnetic Principles
7.2. Magnets and Magnetic Fields
7.3. Discontinuities and Defects
7.4. Induced Magnetic Fields
7.5. Circular and Longitudinal Fields
7.6. Selection of Magnetizing Method
7.7. Commercial Equipment
7.8. Wet and Dry Particle Inspection
7.9. MT Improvements
7.9.1. Remote Magnetic Particle Inspection
7.9.2. Probe Power
7.9.3. Lightweight UV Lamps
7.9.4. Dual Light (UV/VIS and VIS) Particle Indications
7.10. Applications
7.11. Residual Fields and Demagnetization
7.12. Magnetic Flux Strips
7.13. Hall Effect Gaussmeter
7.14. The Hysteresis Curve
7.15. Selection of Equipment
7.16. Advantages and Disadvantages of the Method
7.17. Magnetic Rubber Inspection
7.17.1. Introduction
7.17.2. Inspection Principles
7.17.3. Advantages of MRI
7.17.4. Formulations
7.18. Underwater MRI
7.18.1. Technique
7.18.2. Disadvantages
7.19. Magnetic Penetrameters
7.20. Discontinuities and Their Appearances
7.21. Nonrelevant Indications
8. Neutron Radiographic Testing
8.1. Introduction
8.2. Physical Principles
8.3. Neutron Radiation Sources
8.4. Neutron Activation Analysis
8.5. Ward Center TRIGA Reactor
8.6. Radiation Hazards and Personal Protection
8.7. Radiation Detection Imaging
8.7.1. Conversion Screens
8.7.2. Indirect Transfer Method
8.7.3. Direct Transfer Method
8.7.4. Fluorescent Screens
8.8. Electronic Imaging
8.9. Non-Imaging Detectors
8.10. Neutron Radiographic Process
8.11. Interpretation of Results
8.12. Other Neutron Source Applications
8.13. Neutron Level Gauges
8.14. Californium-252 Sources
8.15. Neutron Radioscopic Systems
8.15.1. Introduction
8.15.2. Neutron Imaging System Components
8.15.3. On-Line Inspection Systems
8.15.4. Characteristics of Aluminum Corrosion
8.15.5. Thermal Neutron Inspection System Requirements
8.15.6. Conclusions
9. Radiographic Testing Method
9.1. Industrial Radiography
9.1.1. Personnel Monitoring
9.1.2. Selected Definitions
9.1.3. Survey Instruments
9.1.4. Leak Testing of Sealed Sources
9.1.5. Survey Reports
9.2. Work Practices
9.3. Time - Distance - Shielding - Containment
9.4. Regulatory Requirements
9.5. Exposure Devices
9.6. State and Federal Regulations
9.7. Basic Radiographic Physics
9.7.1. Introduction
9.7.2. Isotope Production
9.8. Fundamental Properties of Matter
9.9. Radioactive Materials
9.9.1. Stability and Decay
9.9.2. Activity
9.9.3. Half-Life
9.10. Types of Radiation
9.11. Interaction of Radiation with Matter
9.12. Biological Effects
9.13. Radiation Detection
9.13.1. Survey Instruments
9.14. Radiation Sources
9.14.1. Isotope Sources
9.15. Portable Linear Accelerators
9.16. Special Radiographic Techniques
9.17. Standard Radiographic Techniques
9.17.1. Introduction
9.17.2. Basic Principles
9.17.3. Screens
9.17.4. Film Composition
9.18. The Radiograph
9.18.1. Image Quality
9.18.2. Film Handling, Loading and Processing
9.18.3. High Intensity Illuminators
9.19. Fluoroscopy Techniques
9.20. Flat Panel Digital Imaging Systems
9.21. Flat Panel vs. Fuji Dynamix CR Imaging System
9.21.1. Resolution
9.21.2. Ghost Images
9.21.3. Image Lag
9.21.4. Dark Current Noise
9.21.5. Portability
9.21.6. Temperature Sensitivity
9.21.7. Flexibility
9.21.8. Fragility
9.21.9. Advantages
9.22. Industrial Computed Tomography
9.22.1. Scan Procedure
9.22.2. Applications for Industrial Computed Tomography
9.22.3. CT System Components
9.23. Automatic Defect Recognition
9.23.1. Imaging Improvements
9.23.2. LDA Design and Operation
9.23.3. ADR Techniques
9.23.4. Neural Network Artificial Intelligence (AI)
9.23.5. Rule Base Using Specific Algorithms
9.23.5.1. Operating Sequence
9.27.6. ADR Advances of a PC Platform over Proprietary Hardware
9.27.7. ADR Techniques
9.27.8. S-ADR
9.27.9 Conclusions
9.28. The Digitome Process
9.28.1. Examination Concept
9.28.2. Digital Flat Panel Detector
9.28.3. Image Acquisition
9.28.4. Flaw Location and Measurement
9.28.5. Other Applications
9.29. Manufacturing Processes and Discontinuities
9.30. Other Applications
9.30.1. Electron Capture Detection
9.30.2. Moisture Gauging
9.30.3. Bone Density
9.30.4. Gamma and Beta Thickness Gauging
9.30.5. Gamma and Beta Backscatter Gauging
9.30.6. Gamma Level Gauging
9.30.7. Gamma Density Measurement
9.30.8. Point Level Switch
9.30.8.1. Features and Benefits
9.30.9. Oil Well Logging
10. Thermal/Infrared Testing Method
10.1. Basic Modes of Heat Transfer
10.2. The Nature of Heat Flow
10.2.1. Exothermic and Endothermic Reactions
10.2.2. Exothermic Reactions
10.2.3. Endothermic Reactions
10.3. Temperature Measurement
10.4. Common Temperature Measurements
10.4.1. Melting Point Indicators
10.5. Color Change Thermometry
10.5.1. Irreversible Color Change Indicators
10.5.2. Thermochromic Liquid Crystal Indicators
10.5.3. Liquid in Glass Thermometers
10.6. Temperature Sensors with External Readouts
10.6.1. Thermocouple Sensors
10.6.2. Special Thermocouple Products
10.6.3. Resistance Temperature Devices (RTDs)
10.6.4. Resistance Temperature Elements (RTEs)
10.7. Infrared Imaging Energy
10.8. Heat and Light Concepts
10.9. Pyrometers
10.9.1. Error Correction
10.9.2. Principles of Operation
10.9.3. Narrow Band Optical Pyrometers
10.9.4. Broad Band Optical Pyrometers
10.9.5. Design and Operations of Optical Pyrometers
10.9.6. Applications for Broadband Optical Pyrometers
10.9.7. Installation of Optical Pyrometers
10.10. Infrared Imaging Systems
10.10.1. Black Body Calibration Sources
10.11. Spacial Resolution Concepts
10.11.1. FOV, IFOV MIFOV and GIFOV
10.11.2.

Bewertungen

0 Bewertungen
0 Bewertungen
0 Bewertungen
0 Bewertungen
0 Bewertungen

Details

Verfasser: Suche nach diesem Verfasser Mix, Paul E.
Verfasserangabe: Paul E. Mix
Jahr: 2005
Verlag: New York [u.a.], Wiley
opens in new tab
Systematik: Suche nach dieser Systematik TE-20, BT-20
Interessenkreis: Suche nach diesem Interessenskreis Lehrbücher
ISBN: 0471420498
Beschreibung: 2. edition, XXVI, 681 S. : Ill., graph. Darst.
Schlagwörter: Bioverfahrenstechnik; Nondestructive testing; LC; Verfahrenstechnik; Technik, Sicherheit
Suche nach dieser Beteiligten Person
Sprache: englisch||
Fußnote: Literaturangaben
Mediengruppe: Ausleihbestand